
CCF Transactions on Networking manuscript No.
(will be inserted by the editor)

Communication and
Computation Cooperation in
Cloud Radio Access Network
with Mobile Edge Computing

Tong Li · Kezhi

Wang · Ke Xu · Kun

Yang · Chathura

Sarathchandra

Magurawalage ·
Haiyang Wang

Received: June 4, 2018 / Accepted: October 26, 2018

Abstract Cloud radio access network (C-RAN) and

mobile edge computing (MEC) have emerged as promis-

ing candidates for the next generation access network

techniques. Unfortunately, although MEC tries to uti-

lize the highly distributed computing resources in close

proximity to user equipments (UE), C-RAN suggests

to centralize the baseband processing units (BBU) de-

ployed in radio access networks. To better understand

Tong Li
2012 Labs, Huawei Technologies, Shenzhen, China
E-mail: litong12@tsinghua.org.cn

Kezhi Wang
Department of Computer Science and Technology, Northum-
bria University, Newcastle upon Tyne, United Kingdom
E-mail: kezhi.wang@northumbria.ac.uk

Ke Xu
Department of Computer Science and Technology, Tsinghua
University, Beijing, China
E-mail: xuke@tsinghua.edu.cn

Kun Yang
School of Computer Science and Electronic Engineering, Uni-
versity of Essex, Colchester, United Kingdom
E-mail: kunyang@essex.ac.uk

Chathura Sarathchandra Magurawalage
InterDigital Europe, United Kingdom. Part of his work was
done at the School of Computer Science and Electronic En-
gineering, University of Essex, Colchester, United Kingdom
E-mail: chathura.sarathchandra@gmail.com

Haiyang Wang
Department of Computer Science, University of Minnesota at
Duluth, Duluth, United States
E-mail: haiyang@d.umn.edu

Corresponding author: Ke Xu

and address such a conflict, this paper closely investi-

gates the MEC task offloading control in C-RAN envi-

ronments.

Most prior work handling offloading control falls in

the general category of resource allocation optimiza-

tion. However in this paper, we focus on the perspec-

tive of matching problem. Our model smartly captures

the unique features in both MEC and C-RAN with

respect to communication and computation efficiency

constraints. We divide the cross-layer optimization into

the following three stages: (1) matching between re-

mote radio heads (RRH) and UEs, (2) matching be-

tween BBUs and UEs, and (3) matching between mobile

clones (MC) and UEs. By applying the Gale-Shapley

Matching Theory in the duplex matching framework,

we propose a multi-stage heuristic to minimize the re-

fusal rate for user’s task offloading requests. Trace-based

simulation confirms that our solution can successfully

achieve near-optimal performance in such a hybrid de-

ployment.

Keywords Computation Offloading · Cloud Radio

Access Network · Mobile Edge Computing · Offloading

Control

1 Introduction

User equipment (UE), such as smartphone and wear-

able device, is playing an important role in new ap-

plication scenarios including virtual reality (VR), aug-

mented reality (AR) and cloud gaming etc. While

resource-constrained UEs (CPU, GPU, memory, stor-

age capacity, and battery lifetime) have driven a dra-
matic surge in developing new paradigms to handle

computation intensive tasks [Kumar(2010)] (for exam-

ple, computation intensive applications requiring huge

computing capacity are not suitable to run in mobile or

portable devices). As shown in Figure 1, Mobile cloud

computing (MCC) [Dinh(2013)] provides a solution where

UEs offload computation to the remote resourceful cloud

(e.g., EC2 [Amazon(2018)]), thereby saving processing

power and energy. However, the cloud in MCC scenar-

ios is usually in a wide area network (WAN), and it is

difficult to control delays and jitters at the WAN scale.

Therefore offloading tasks to the public cloud may suf-

fer from high latency via the Internet [Safaei(2005)].

For example, AR requires low latency in order to pro-

vide correct information according to user location and

orientation, while offloading tasks to remote cloud may

incur information distortion due to delayed data trans-

mission. To accomplish this, mobile edge computing

(MEC) [Hu(2015)] [Beck(2014)] is proposed where UEs

offload computation intensive tasks to a computing



2 Tong Li et al.

Cloud Computing

(Centralized Architecture)

Mobile Cloud Computing 

(MCC)

Mobile Edge Computing 

(MEC)

Cloud RAN (C-RAN)

Bring the cloud 

resource to mobile user

Bring the mobile cloud 

resource to network egde

Hybrid Deployment of C-RAN with MEC 

Integrate C-RAN with MEC

Bring the cloud resource to 

radio access networks (RAN)

Fig. 1: Evolution progress

resource-rich location, within radio access networks (RAN)

and in close proximity to UEs.

On the other hand, task offloading generates data

intensive workloads, which may become one of the main

influential factors of the unprecedented mobile traffic

growth [Ahmed(2015)]. It has been predicted that mo-

bile traffic will increase exponentially to 100 times by

the year 2020 [Andrews(2014)]. The dynamics of sub-

stantially increased data rates requires that cellular in-

frastructure must be flexible and reconfigurable, sup-

porting simplified deployment and management of RANs.

As conventional radio access network may incur high

cost, latency and inefficient data exchange [Mobile(2011)],

it lacks the efficiency to support centralized interference

management and the flexibility to migrate services to

network edges for computation intensive applications.

To ensure highly efficient network operation and
flexible service delivery when handling mobile Internet

traffic surging, cloud radio access network (C-RAN) [Mo-

bile(2011)] [Wu(2012)] brings cloud computing tech-

nologies into mobile networks by centralizing baseband

processing units (BBU) of RAN. It moves BBU from

traditional base stations to the cloud and leaves remote

radio heads (RRH) distributed geographically. RRHs

are connected to BBU pool via high bandwidth and

low-latency fronthaul. The BBU pool is realized by vir-

tual machines (VM) in data centers, and the centralized

processing enables BBU to be dynamically configured

and shared [Tang(2015)]. In this case, with the transi-

tion from a conventional hardware based environment

to a software based infrastructure, C-RAN can achieve

flexible matching between RRHs and BBUs on demand.

To summarize, C-RAN has emerged as a replace-

ment for the next generation access network. Prior work

has proposed the hybrid deployment of C-RAN with

MCC [Wang(2016b)] [Wang(2016a)], however, this in-

tegration still suffers the bottleneck introduced by MCC

BBU

MC

UE

Fronthaul

C-RAN

MEC 

Platform

Backhaul

Computation 

Offloading

UE: user equipment
RRH: remote radio heads
BBU: baseband processing unit
MC: mobile clone
MEC: mobile edge computing
C-RAN: cloud radio access network

RRH

Uplink: UE RRH BBU MC

Fig. 2: Computation offloading architecture

(e.g., long latency). As mentioned above, MEC is a

promising replacement of MCC in the latency-sensitive

scenarios. It is worth mentioning that C-RAN uses cen-

tralized BBU to do baseband processing, while MEC

handles distributed task offloading by shifting compu-

tation capacity from a public cloud to an edge cloud.

Since MEC usually works with distributed base sta-

tions in conventional RANs, it is quite interesting to

see if the MEC mobile offloading still works in C-RAN

environments [Li(2017)].

Figure 2 shows the hybrid deployment of C-RAN

with MEC1 for computation offloading. Connected with

geographically distributed RRHs and centralized BBUs,

UEs get access to VMs, called mobile clones (MC), in

a mobile cloud for computation offloading. For compu-

tation offloading requests, data is transmitted to MCs

by base stations (composed of RRHs and BBUs) via

uplinks. Once processed by an MC in the mobile cloud,

the results will be returned to UEs via downlinks. As of-

floading control mainly focuses on uplink optimization,

we calculate the completion time of task offloading as

the sum of the data transmission latency via wireless

communication and the task processing time on MCs.

Assume RRHs, BBUs and MCs are heterogeneous

(e.g., different loads and amount of resources), then

the different matching among UEs, RRHs, BBUs and

MCs results in different task offloading efficiencies. In

particular, data transmission latency depends on the

assignment of both RRHs and BBUs, and task pro-

cessing time depends on the MC assignment. However,

the UE interaction makes it challenging to directly as-

sign a UE’s most satisfied RRH, BBU or MC to them.

1 The MEC platform is implemented by an edge cloud in
close proximity to the BBU pool. The transmission latency
from the MEC cloud to BBUs can be ignored compared to the
latency from the MCC cloud to BBUs. Since the MCC cloud
is usually in WANs far away from the radio access network,
we call it MEC other than MCC in the hybrid deployment.



Communication and Computation Cooperation in Cloud Radio Access Network with Mobile Edge Computing 3

This interaction may affect the task offloading efficiency

in two aspects: (1) the wireless transmission data rate

will decrease with poor channel qualities between UEs

and RRHs, (2) while the baseband processing speed of

BBUs and task processing speed of MCs will be slowed

down when overloaded. The former is called communi-

cation efficiency, and the latter is called computation

efficiency.

For offloading control, we define refusal ratio as the

proportion of offloading tasks that are not able to meet

their deadlines. Then this paper is devoted to the ef-

ficient offloading control by addressing the assignment

problem: how to assign RRHs, BBUs and MCs to UEs

to minimize the refusal ratio among all the offloading re-

quests? Different from the prior solutions of resource al-

location [Wang(2016b)] [Wang(2016a)] [Sardellitti(2015)]

[Tang(2015)] and admission control [Ha(2014a)]

[Ha(2014b)], we focus on the matching problem. More-

over, we take into account the task offloading efficiency

not only in wireless transmission but also in cloud com-

puting, which is new and challenging in achieving effi-

cient MEC task offloading control in C-RAN environ-

ments.

Motivated by these observations, we first formulate

the joint assignment among UEs, RRHs, BBUs and

MCs, which is unfortunately NP-Hard. By applying the

duplex matching framework based on the classic Gale-

Shapley Matching Theory, a multi-stage heuristic is fi-

nally given to minimize the refusal rate for UE’s task

offloading requests. Our major contributions are sum-

marized as follows:

– We handle the offloading control with a new per-

spective that focuses on the joint RRH, BBU and

MC matching problem, where a 0-1 programming

model capturing the unique features in both MEC

and C-RAN is proposed (Section 4).

– We divide the optimization problem into three stages

including the UE-to-RRH stage, the UE-to-BBU stage,

and the UE-to-MC stage, and a multi-stage heuristic

for efficient offloading control is proposed(Section 6).

– We further conduct a trace-based evaluation to show

that our solution can achieve the near-optimal per-

formance for MEC task offloading control in C-RAN

environments (Section 7).

2 Related Work

C-RAN is a cloud based, centralized, and collaborative

radio access network, which was proposed by China mo-

bile in 2009 and soon received a large amount of inter-

ests [Mobile(2011)]. Moreover, in 2015, another cloud-

based technology, i.e., mobile edge computing was

launched by European Telecommunications Standards

Institute (ETSI), which aims to bring cloud services

closer to UEs [ETSI(2018)] such that users can enjoy

high data rate, low latency and jitter services.

Cai et al. [Cai(2014)] enabled cloud services in the

Internet, serving UEs by using a split-TCP proxy. How-

ever, the Internet may introduce large latency to the

transmission, which may not be able to complete tasks

within the required time limits. Wang et al.

[Wang(2016b)] [Wang(2016a)] studied the joint resource

allocation in C-RANs with MCC under the time con-

straints of the given tasks. Also, Sardellitti et al. [Sardel-

litti(2015)] studied joint optimization of radio and com-

putational resources for MEC combined with cellular

networks. Tang et al. [Tang(2015)] studied the cross-

layer resource allocation with elastic service scaling in

C-RANs. Nevertheless, all the above work [Wang(2016b)]

[Wang(2016a)] [Sardellitti(2015)] [Tang(2015)] fell in the

general category of resource allocation optimization,

without considering the optimal matching between users

(e.g., UE), communication resource (e.g., BBU) and

computing resource (e.g., MC).

Moreover, Ha et al. [Ha(2014a)] proposed coopera-

tive transmission in C-RANs considering cloud process-

ing constraints by allocating different BBUs and RRHs

to different UEs. However, this paper did not consider

the admission control scheme yet. Ha [Ha(2014b)] moved

a step further by considering admission control in C-

RANs under the fronthaul constraints. Both of the two

papers only consider communication efficiency, other

than considering cloud service computation efficiency

as well.

Thus, to address the above challenges, we focus on

the perspective of multi-stage RRH, BBU and MC as-

signments, and design a duplex matching framework

based on the classic Gale-Shapley Matching Theory. To

the best of our knowledge, no prior work has used the

multi-stage matching algorithm to solve the offloading

control problem in C-RANs with MEC, taking into ac-

count both communication efficiency and computation

efficiency.

3 Offloading Control: Background and

Framework

This section clarifies the computation offloading back-

ground and the offloading control framework in C-RANs

with MEC.



4 Tong Li et al.

3.1 Computation Offloading

Facing at the growing requirement for running resource-

demanding applications, computation offloading expands

the user base to the vast number of less powerful de-

vices (e.g., mobile phones and tablets). For example,

the industrial pioneers such as Gaikai [Gaikai(2018)]

and Onlive [Onlive(2018)] suggested a new generation

of online gaming based on cloud computing platforms.

For most 3D online games (e.g., Battlefield 3, a highly

popular first-person shooter game), the recommended

system configuration is a quad-core CPU, 4 GB RAM,

20 GB storage space, and 1 GB video memory. How-

ever, the newest Samsung Galaxy or iPhone can only

approach to the minimum system requirements, not to

mention mobile devices whose hardware capability is

limited. In this case, by utilizing the powerful and elas-

tic service capacity offered by cloud computing, task of-

floading can meet the hardware/software requirements

of user consoles. In particular, Gaikai and Onlive de-

ploy cloud-based proxy to act as a game console/client

and only stream game screen/interactions to end users.

Conventional cloud-based computation offloading of-

fers great benefits for both users and service providers.

However, offloading tasks to a public cloud may in-

cur high latency due to multi-hop data transmission.

For example, cloud gaming applications [Wang(2014)]

firstly collect user actions, and then transmit them to

the cloud proxy. During being processed in the cloud,

the actions are rendered, encoded and compressed. There-

after, the video (game scenes) will be streamed back to

the player. All these serial operations must happen in

milliseconds in order to ensure stable user’s interactiv-

ity. The task offloading latency in MCC is thus essential

even when the cloud capacity is not limited [Safaei(2005)].

To deal with the challenging issue of transmission

delay, MEC, a new paradigm bringing the computation

and storage to the close proximity of mobile subscribers,

has attracted intensive attention from academia and

industry [Hu(2015)] [Beck(2014)]. Figure 2 illustrates

the overall architecture for task offloading in C-RAN

with MEC. There are three basic components in the

architecture: (1) Geographically distributed, RRHs are

remote radio transceivers that bridge UEs and the op-

erator radio control panel, performing lower layer ana-

logue radio frequency (RF) functions. (2) Centralized

in C-RANs, BBU is a unit for digital signal processing

which can dynamically provision baseband processing

for multiple distributed RRHs on demand. (3) MC is

a VM (e.g., an Android-x86 VM) deployed in a edge

cloud near the BBU pool, hosting various mobile edge

applications (e.g., edge health care, smart tracking, au-

tomatic drive). For the scenarios of C-RANs with MEC,

the MEC platform hosts computation and services at

the edge of RANs, reducing network latency and band-

width consumption for subscribers. Furthermore, net-

work operators allow third-party partners to run the

MEC platform, which will promote the rapid deploy-

ment of new applications and edge services to the mo-

bile subscribers.

3.2 Computation and Communication Efficiency

Here we argue that not only communication efficiency

but also computation efficiency should be considered

in C-RANs with MEC scenarios, i.e., there is inter-

ference among UEs both in wireless data transmission

and cloud task processing. It is easy to understand that

wireless channel quality will be influenced by user inter-

action. On the other hand, multiple tasks will compete

for CPU time slices, which may lead to queueing de-

lay. Moreover, based on the fact that the BBU process-

ing during wireless communication can be regarded as

computation intensive workload [Mobile(2011)], multi-

ple UEs will also compete for the computing resource

in the BBU. Table 1 summarizes some of the notations

in our analysis.

Table 1: Summary of notations

Notation Meaning

U ,L,B,V Set of the UEs, RRHs, BBUs and MCs, respec-
tively (u ∈ U , l ∈ L, b ∈ B, v ∈ V);

du Deadline of the offloading task for UE u;
cu Completion time of the offloading task for UE

u;
Du Traffic size transmitted to the cloud for UE u;
Fu Computing resource demand of the offloading

task;
q Number of UEs/Tasks on a node (BBU or MC);
f Processing speed of a node (BBU or MC);
ρu Transmission data rate (bit/second) for UE u;
α Coefficient indicating the speed of full-loaded

machine;
β Coefficient controlling the skewness of the rela-

tionship between load and speed (β ∈ (1,+∞));
γ VM service limitation;
θul MCS index value between UE u and RRH l.

Computation Efficiency. With regard to task pro-

cessing, we use qv to denote the number of tasks (load)

being processed in MC v. Wang et. al [Wang(2014)] has

conducted comprehensive experiments to demonstrate

that the traffic load can significantly slow down process-

ing speed of cloud VMs. Yet, such a problem is rarely

seen on the non-virtualized local game consoles, or to

a much lower degree. Since virtualization is applied

in both C-RAN and MEC platforms, the Net Present



Communication and Computation Cooperation in Cloud Radio Access Network with Mobile Edge Computing 5

Value (NPV) function [Ross(1995)] applied by Wang

can be borrowed to capture the relationship between

processing speed and load (NPV has been widely used

to quantify the relationship between cash and price/cost,

which resembles our case when we try to purchase more

computation resources to reduce the virtualization cost

on VMs). We therefore calculate the task processing

speed as follow:

fvGOPS =
βγ−qv

α
(1)

where fvGOPS refers to the computation frequency (CPU

cycles per second) with the unit of giga operations per

second (GOPS) in MC v. The parameter α indicates

the speed when MC is fully loaded (reaching the VM

service limitation γ (γ > max{bnk c, b
n
mc}). Here the

service limitation depends on the resource allocated to

the VM, reflecting the budget of network operators. The

parameter β controls the skewness of the relationship

between load and speed where β ∈ (1,+∞). It is easy

to see that different VMs may have different α, β and γ.

For example in [Wang(2014)], the features of the EC2

large cloud instances is captured as follows: α is around

105, β is around 1.04, and γ represents the resource

amount purchased from EC2. We have also investigated

the parameters through our own testbed measurement,

which is detailed in Section 7.1.

Communication Efficiency. On the other hand,

the communication efficiency is influenced by multiple

factors such as radio signal bandwidth and the mod-

ulation and coding scheme (MCS) index. Alyafawi et

al. [Alyafawi(2015)] conducted a research to show that

the decoding and encoding time for the LTE subframes

grows with the increase of the MCS index. It is revealed

that effective data rate over air interface (goodput) is

mainly controlled by MCS. For heterogeneous UEs and

RRHs in C-RANs, the MCS index varies from 0 to

31, deciding the number of bits per symbol and defin-

ing the amount of redundant information inserted into

data stream [MCS(2018)]. Hence, the communication

efficiency mainly depends on the MCS index between

RRHs and UEs (in this paper, we do not consider user

interference in wireless channels, whereas it can also be

reflected by the MCS index). Based on the prior related

work [Sigwele(2015)], we define the base station com-

munication efficiency with the unit of giga operations

per bit2 (GOPB). We use fGOPB = g(θul) to denote

the communication efficiency, where g(θ) is defined as

2 Based on the fact that poor channel quality aggravates
packet loss and retransmission, resulting in more operations
for baseband processing such as frequency domain (FD) pro-
cessing and forward error correction (FEC), base station com-
munication efficiency can be expressed in GOPB. Note that
one operation here equals to π (π ≥ 1) CPU cycles, the co-

a function of the MCS index. θul denotes the MCS in-

dex between UE u and RRH l.

Therefore, we derive the wireless transmission data

rate (bit per second) as follow:

ρu =
f bGOPS
g(θul)

(2)

where f bGOPS refers to the computation frequency with

the unit of GOPS in BBU b.

3.3 Offloading Control Framework

Real-time big data applications running on UEs have

received considerable attention in the recent years

[Ahmed(2015)]. These applications including automatic

driving, health care, cloud gaming, mobile cloud gover-

nance etc. tend to offload their computation intensive

functions to the cloud. Since it is not always smart to

offload all tasks (small ones), UEs can make the decision

according to the trade-offs between the overheads and

benefits of offloading [Kumar(2010)]. Here we assume

all UEs have offloading requests in our offloading con-

trol framework. For offloading tasks of hard real-time

applications, their expected completion time varies due

to the interdependence of tasks, i.e., deadline of each

task might be discrepant [Gardner(2015a)]. Meanwhile,

the task will be invalid if it exceeds its deadline. Thus,

offering an improved user experience and gaining higher

operator profit mean maximizing the number of tasks

that meet their deadlines across all offloading requests.

We illustrate the deadline-aware offloading control

framework in Fig. 3. In terms of heterogeneous RRHs,

BBUs and MCs, we consider the channel qualities be-

tween RRHs and UEs, the BBU load and the MC load

as the inputs. At first, UE generates tasks with of-

floading requests, then the offloading control unit (e.g.,

the mobile cloud controller) assigns RRHs, BBUs and

MCs to UEs. The expected completion time of each of-

floading task is obtained as the output. By estimating

whether a task may exceed its deadline, we decide to

accept or reject UE’s offloading request. Note that our

objective is to maximize the number of tasks meeting

their deadlines, the operator may gain a better profit

while satisfying most subscribers.

4 Problem Formulation

In this section, we formulate the matching problem

among UEs, RRHs, BBUs and MCs to achieve the opti-

mal offloading control in C-RANs with MEC. Note that

efficient π is not explicitly reflected in Equation (2), but im-
plicitly considered in g(θ).



6 Tong Li et al.

...

UE

Offloading Control Unit

Decision: Accept or Reject?

Output

Input

Offload Request

Channel Qualities 
Between 

RRH and UE
BBU Load MC Load

c < d ?

c: Completion Time
d: Deadline

Fig. 3: Offloading control framework

the problem we are solving can also be modeled into a

non-matching problem, however, this paper proposes a

different way, from the matching perspective, to achieve

the maximum utility of both the operator and user.

As summarized in Table 1, U = {u1, u2, ..., un}, L =

{l1, l2, ..., lo}, B = {b1, b2, ..., bk} and V = {v1, v2, ..., vm}
denote the sets of UEs, RRHs, BBUs and MCs, respec-

tively. n, o, k, and m denote the number of UEs, RRHs,

BBUs and MCs, respectively. For a UE u ∈ U that re-

quests task offloading, du refers to the deadline, and cu
refers to the completion time. According to Section 3.2,

we consider the constraints of computation and commu-

nication efficiency. We model the task processing time

and the wireless transmission latency, and then model

the assignment optimization problem.

4.1 Task Processing Time

As mentioned above, computation efficiency depends

on the loads in MCs. According to Equation (1), we

therefore obtain the processing time of UE’s offloading

tasks as follow:

TC(u, v) =
Fu

fvGOPS
=

αFu
βγ−qv

(3)

where Fu refers to the computing resource of the of-

floading task, which is denoted by the number of CPU

operations. Fu can be obtained by using the approaches

provided in [Yang et al.(2013)Yang, Cao, Tang, Li, and

Chan]. Note that although MCs do not usually have the

same architecture as mobile devices in terms of hard-

ware, we can calculate the cloud CPU cycles according

to the mobile device ones [Kosta(2012)].

4.2 Wireless Transmission Latency

In C-RANs, user data is transmitted by wireless com-

munication via base stations, in which the fibre links

...

UE

...

RRH

...

UE

...

BBU
...

UE

...

MC

UE-to-RRH UE-to-BBU UE-to-MC

Assignment Assignment

Fig. 4: Joint assignment among UEs, RRHs, BBUs and

MCs

between RRHs and BBUs allow more flexibility in net-

work planning and deployment. On the other hand,

the BBU pool is also a cloud-based platform in C-

RANs. Thus, the wireless transmission latency is re-

lated to both communication efficiency and computa-

tion efficiency. As mentioned above, we use different

MCS indexes to estimate the communication efficiency.

For the BBU baseband computation efficiency, we again

use the NPV function to capture the relationship be-

tween baseband processing speed and the BBU load,

i.e., f bGOPS = βγ−qb

α . Then based on Equation (2), we

obtain the wireless transmission latency for UE u as

follow:

TN (u, l, b) =
Du

ρu
=
α ·Du · g(θul)

βγ−qb
(4)

where Du refers to the traffic size to be transmitted to

the cloud for UE u. Du can also be obtained by us-

ing the approaches provided in [Yang et al.(2013)Yang,
Cao, Tang, Li, and Chan].

4.3 Joint Assignment Optimization

Figure 4 illustrates the RRH, BBU and MC assign-

ments. We define xuv, zul, yub as the decision variables.

In particular, xuv, zul, yub = 1 if MC v, RRH l and

BBU b are assigned to UE u, respectively, otherwise

xuv, zul, yub = 0. Since the offloading scheme depends

on whether the task is able to meet its deadline, our

objective becomes minimizing the refusal ratio for the

UE’s offloading requests, i.e., maximizing the amount of

UEs whose completion time is less than their deadlines.

As mentioned before, we focus on the uplink completion

time, which can be calculated by

cu = TC(u, v(u)) + TN (u, l(u), b(u)) (5)

where v(u), l(u), and b(u) denote the MC, RRH and

BBU assigned to UE u, respectively. Defining {x}+ =



Communication and Computation Cooperation in Cloud Radio Access Network with Mobile Edge Computing 7{
1,

0,

x > 0

otherwise
, we therefore obtain the number of UEs

that will miss their deadlines, i.e., Z =
∑
u∈U {cu − du}+

(refusal ratio is Z
n ). Then the joint assignment optimiza-

tion model is proposed as follows:

min
∑
u∈U
{cu − du}+ (6)

s.t.
∑
v∈V

xuv,
∑
b∈B

yub,
∑
l∈L

zul = 1 ∀u ∈ U (7)∑
u∈U

xuv ≤ γv − γ0v , ∀v ∈ V (8)∑
u∈U

yub ≤ γb − γ0b , ∀b ∈ B (9)

xuv, yub, zul = 0 or 1, ∀u ∈ U , v ∈ V, b ∈ B
(10)

where the constraint (7) refers to that every UE only

selects one MC, every UE only selects one BBU, and

every UE only selects one RRH. Note that the load of

MC v can be calculated as qv =
∑
u∈U xuv+γ0v , and the

load of BBU b can be calculated as qb =
∑
u∈U yub+γ0b ,

where γ0 denotes the initial load. Then (8) and (9) refer

to the service limitation constraints of MC and BBU,

respectively.

Assuming the amount of computing resource is given,

according to the Formulas (3)-(6) and (10), this match-

ing problem can therefore be transformed into a 0-1

Multiple Knapsack problem with a non-linear objec-

tive function, which is known to be NP-hard [Li(2006)].

Thus we are devoted to seeking efficient heuristics to-

wards the optimal solution, which will be detailed in

the next sections.

5 Duplex Matching Framework

Our modeling focuses on the joint assignment optimiza-

tion among UEs, RRHs, BBUs and MCs. By exhaus-

tively searching all the possible combination of xuv, yub
and zul, the optimal solution can be achieved. How-

ever, the practical usefulness of this method is limited

considering the real-time user demands. We thus pro-

pose a tri-level heuristic, which divides the optimiza-

tion problem into three stages: the UE-to-RRH stage,

the UE-to-BBU stage, and the UE-to-MC stage. As

illustrated in Fig. 4, each stage is involved into the

matching of a bipartite graph. The maximum matching

of the bipartite graph can be achieved by other max-

imum flow algorithms (e.g., the Edmonds-Karp algo-

rithm [Edmonds(1972)]) or the Hungary algorithm

[Kuhn(1955)]. Here we argue that none of these algo-

rithms takes into account the interference between the

Student Preference List

College Preference List

Students Colleges

e.g., UEs e.g., BBUs, MCs

Fig. 5: Duplex matching in CAP

matching elements (e.g., UEs), whereas both commu-

nication efficiency and computation efficiency result in

dynamic utility of the matching elements. For example,

for the two UEs (u1, u2) and two BBUs (b1, b2), the

baseband processing speed matrix is set as

(
10 15

20 30

)
(q = 1). When we assign the same BBU b1 to both

UEs, based on the fact that the BBU load affects com-

putation efficiency, UE’s baseband processing speed will

decrease, i.e., the utility of UEs is lower than
(
10 15

)
.

However, the conventional bipartite graph algorithms

failed to adapt to the utility dynamics of UEs. Un-

der these circumstances, we aim to seek a novel duplex

matching framework on account of the NP-Hardness of

the joint assignment optimization model while adapt-

ing to the dynamics of computation and communication

efficiency.

5.1 Deferred Acceptance (DA) Algorithm

First of all, we heuristically abstract a duplex match-

ing framework which is inspired by the Gale-Shapley

Matching Theory [Gale and Shapley(1962)], where Gale et

al. discussed the real-life college admission problem (CAP).

As shown in Fig. 5, regarding to the CAP, students are

considered by a college which can admit a quota (de-

noted by ϕ). According to the applicant qualifications,

the college decides which one to admit. Since students

may apply multiple colleges according to their various

preference lists, it is not generally satisfactory for the

college to offer admissions to its ϕ best-qualified appli-

cants. In this paper, UEs act the role of students, while

RRHs, BBUs or MCs act as colleges.

The CAP can be solved by the classic Gale-Shapley

Deferred Acceptance (DA) algorithm, which has already

been proved to result in stable and the Pareto efficient

match [Gale and Shapley(1962)]. DA is described as

below.

Iteration i: All the non-admitted students apply to

their ith choice, and each college takes into account both

the new applicants and the existing ones in its prospec-

tive admission list, assuming the total number of ap-



8 Tong Li et al.

plicants is x. According to the college preference, every

college puts top x (x > ϕ) students into its prospective

admission list and rejects the other x−ϕ applicants. If

x ≤ ϕ, put the x applicants into the prospective admis-

sion list.

Repeat Iteration i until every student is either in

a prospective admission list of a certain college, or re-

jected by all colleges in its preference list.

5.2 Applicability Consideration of DA

Inefficient Stability. It is worth mentioning that here

the preference lists of both students and colleges are

constant during each iteration, which means DA fails

to consider the utility dynamics of UEs (as discussed

above). Gale et al. demonstrated the stability and the

Pareto efficiency of DA with regard to both colleges and

students. Unfortunately, it is observed that this Pareto

efficiency is inapplicable to our target duplex match-

ing framework, in which the optimization objective is

minimizing the refusal ratio. Since the refusal ratio is

tightly coupled with the computation and communica-

tion latency, similar to the conventional bipartite graph

algorithms, DA does not fit our problem without con-

sidering the dynamics of computation and communica-

tion efficiency. Therefore, despite the Pareto efficient,

the stable match of DA is inefficient with regard to the

duplex matching framework, which is called inefficient

stability.

Quota Dependency. On the other hand, the quota

of colleges is also fixed in DA. Here we argue that the

match in DA has severe dependence on this quota. For

instance, Fig. 6 shows the average utility varies with the

quota ϕ. A random-generated instance with 10 colleges

and 50 students are matched using DA. The student

utility is quantified by Equation (1), where we set α =

105, β = 1.04. For simplicity, we assume the student

preference lists are the same and set ϕi = ϕ = γ (i =

1, 2, ..., 10). We can find that the utility increases with

the increase of small ϕ. However, it decreases with the

increase of big ϕ. Intuitively enough, better colleges will

always be popular among students, whereas full-loaded

college results in utility decline according to Equation

(1). It is observed that the performance of DA depends

on the quota setting, called quota dependency.

5.3 Dynamic Duplex Matching Framework

To simultaneously mitigate inefficient stability and quota

dependency, we finally propose the dynamic duplex match-

ing framework, where we not only update the student

10 15 20 25 30 35 40 45 50
0.008

0.01

0.012

0.014

0.016

Quota

A
v
e

ra
g

e
 U

ti
lit

y

Fig. 6: Student utility vs. college quota

preference list but also the college quota during each

iteration.

In terms of inefficient stability, the student prefer-

ence list is constant during all iterations, which ensures

the matching stability of DA. Here we break the stabil-

ity by taking into account the expected utility3 that a

student gets from a college. Since the expected utility

depends on the interaction of all students, the student

preference lists change dynamically during each itera-

tion. This dynamics enables the students to close to the

higher utility when selecting a college. The method to

calculate the expected utility varies with the matching

stage, which will be detailed in the next section.

On the other hand, to mitigate the challenge of

quota dependency, we propose a technical solution that

gives a dynamical quota to each college, i.e., gradu-

ally increase the quota of the preferred college in each

iteration. Here we call it the preferred college whose

applicant amount x meets x > ϕ.

It is easy to see that the dynamic duplex matching

framework tends to result in unstable matches, as we do

not care whether students have ever been rejected by

colleges. In this case, by breaking the stability of DA
we adapt our duplex matching framework to the dy-

namics of computation and communication efficiency.

The worst case complexity of DA is O(|S| ∗ |C|), where

|S| and |C| are the number of students and colleges, re-

spectively [Iwama(2008)]. Since the quota gradually in-

creases during each iteration, the worst case complexity

of the dynamic duplex matching framework turns out

to be O(|S|2 ∗ |C|).

6 Multi-stage Duplex Matching

In this section, we aim to solve the proposed tri-level

heuristic by applying the dynamic duplex matching frame-

work. Table 2 summarizes some of the notations in our

algorithm.

3 Particularly, the expected utility can be the transmission
latency for a UE assigning a BBU or the processing time for
a UE assigning an MC.



Communication and Computation Cooperation in Cloud Radio Access Network with Mobile Edge Computing 9

Table 2: Summary of notations

Notation Meaning

A1 Matching from U to L;
A2 Matching from U to B;
A3 Matching from U to V;
ϕ Admission quota of a BBU or MC;
∆ϕ Integer that denotes admission quota step size;
Y Prospective admission list of a BBU or MC;
Pu UE preference list for a UE to select BBUs

(P ⊆ B);
Qb BBU preference list for a BBU to select UEs

(Q ⊆ U);
P′u UE preference list for a UE to select MCs

(P′ ⊆ V);
Q′v MC preference list for an MC to select UEs

(Q′ ⊆ U).

We define the assignment A1, A2 and A3 as the

matching from U to L, U to B and U to V, respectively.

A1 is the optimal assignment in the UE-to-RRH stage,

while A2 and A3 are heuristic solutions obtained by ap-

plying the Matching Theory in the UE-to-BBU stage

and UE-to-MC stage, respectively. It is worth mention-

ing that separately handling all stages is hard to close

to the optimal assignment, and these three stages are

correlative during multi-stage matching. In particular,

A2 is obtained according to A1, and A3 is obtained ac-

cording to A1 and A2.

6.1 UE-to-RRH Stage

We assume that all the BBUs are the same and fully

loaded, i.e., αb = α and qb = γb (b ∈ B). According to
Equation (4), the expected transmission latency of UE

u becomes α ·Du · g(θul). In this case, each UE just se-

lects the RRH with the minimal expected transmission

latency. Thus, based on the MCS index θul, we can get

the optimal assignment A1 between UEs and RRHs.

6.2 UE-to-BBU Stage

In this stage, different UEs have different deadlines d.

Meanwhile, different BBUs have different loads q and

service limitations γ. The BBU assignment problem to

minimize the transmission latency can be transformed

into a 0-1 Multiple Knapsack problem with the non-

linear objective function, which is known to be NP-

Hard [Brucker(2009)]. Since it is hard to get the optimal

assignment here, we apply the dynamic duplex match-

ing framework. Particularly, we regard UEs as students

and BBUs as colleges. Since both UEs and BBUs own

diverse properties and their preference lists are variable

within a large range, the challenge here is how to define

the preference lists reasonably and efficiently [Li(2016)].

BBU Availability. We assume that all the MCs

are the same and fully loaded, i.e., αv = α and qv = rv
(v ∈ V). According to Equation (3), the expected pro-

cessing time of UE becomes αFu. Since the BBU load

affects transmission latency according to Equation (2),

when we add a UE to the BBU, the performance of the

UEs that are already assigned to this BBU will be af-

fected. We therefore define that a BBU is available to

a UE if those existing UEs can still meet their dead-

lines after the new UE is added in, i.e., TN (u(b)) ≤
du(b) − αFu(b), where u(b) denotes the UE assigned to

BBU b.

Algorithm 1 PreferenceListGeneration()

1: Get θul according A1;
2: for all u that u ∈ U do
3: Get the set of the available BBU set B∗u;
4: end for;
5: for all u b that u ∈ U , b ∈ B do
6: TN (u, l, b) = GetExpectedTransLatency(qu, θul);
7: Get Pu by sorting B∗u by ascending order of TN (u, l, b);
8: Get Qb by sorting U by ascending order of du − αFu;
9: end for;

10: return Q and P;

Preference List Generation. The preference for

UE u to select the available BBUs results in preference

list Pu (P ⊆ B). Also, every BBU owns a preference list

Qb (Q ⊆ U). As depicted in Algorithm 1, we calculate

Pu and Qb as follows. For UE u to select a BBU, Pu is

obtained by sorting BBU set B by an ascending order

of the expected transmission latency. To calculate the

expected transmission latency for UE u assigning BBU

b (Algorithm 1. Step 6), we add 1 to qb and get θul based

on the assignment A1 before calculating TN according

to Equation (2). Similarly, for BBU b to select a UE,

Qb is obtained by sorting U by an ascending order of

du − αFu, where du denotes the deadline of UE u.

UE-to-BBU Duplex Matching. Defining Yb as

the prospective admission list of BBU b, and ϕ as the

quota of a BBU. Based on the dynamic duplex match-

ing framework, the UE-to-BBU duplex matching can

be described as Algorithm 2, of which the iterations

are outlined as below.

Iteration i: Every UE that is not assigned a BBU

applies to its first choice of BBU in the preference list

P (similar to the students applying to colleges in CAP),

each BBU owns a set of x applicants (Step 5 of Algo-

rithm 2). According to the preference list Q, every BBU

puts top ϕ (x > ϕ) UEs into its prospective admission

list Y before rejecting the other x−ϕ applicants (simi-



10 Tong Li et al.

Algorithm 2 DuplexMatchingAlgorithm()

1: i← 1, ϕb ← 1, Yb ← ∅(b ∈ B);
2: while (

⋃
b∈B Yb 6= U) do

3: for all u b that u ∈ (U \ ∪b∈BYb), b ∈ B do
4: (Pu,Qb) = PreferenceListGeneration();
5: Yb = Yb

⋃
{u|GetTopItem(Pu) = b};

6: end for;
7: for all b that b ∈ B do
8: Sort Yb according to UE ranking in Qb;
9: if GetElementCount(Yb) > ϕb then

10: Define a temporary set H as the set of the bottom
(GetElementCount(Yb)− ϕb) UE(s) in Yb;

11: Yb = Yb \ H;
12: ϕb = ϕb +4ϕ;
13: end if ;
14: end for;
15: i = i+ 1;
16: end while;
17: return A2 according to Yb;

lar to the colleges rejecting students in CAP). Then add

4ϕ (1 ≤ 4ϕ ≤ n) to the ϕ of these preferred BBUs. If

x ≤ ϕ, put the x applicants into Y.

Repeat Iteration i until every UE is in a prospective

admission list of a certain BBU or all the BBUs are no

longer available. Then the assignment A2 is obtained

according to Y.

6.3 UE-to-MC Stage

After wireless transmission through base stations, of-

floading tasks are processed in the mobile cloud. The

final UE-to-MC stage handles the MC assignment for

offloading requests. Similar to the UE-to-BBU stage,

it is also feasible to apply the dynamic duplex match-

ing framework in this stage, however, to achieve better

performance we have to modify some steps.

Firstly, the preference list for UE u to select the

available MCs is denoted by P ′u (P ′ ⊆ V), which can be

obtained by sorting V in an ascending order of the ex-

pected processing time. To calculate the expected pro-

cessing time for UE u assigned MC v, we add 1 to qv
and calculate TC according to Equation (3). Different

from the UE-to-BBU stage, for MC v to select UEs,

the preference list Q′v (Q′ ⊆ U) is obtained by sort-

ing U in an ascending order of du − TN , where TN is

calculated based on the assignment A2. Secondly, the

available MCs for a UE must meet the constraints of

TC ≤ du−TN for all the UEs assigned to this MC. Note

that during the UE-to-BBU stage, some of the offload-

ing requests were probably not assigned to any BBU,

due to task deadline constraints and BBU service lim-

itations. As a result, in this stage we no longer assign

MCs to the UEs that were not assigned a BBU.

0 50 100 150 200 250
35

40

45

50

55

60

65

70

75

Load: # of Tasks
T

a
s
k
 p

ro
c
e
s
s
in

g
 t
im

e
 (

m
s
)

 

 

Processing time vs. Load

f(x)=102/(1.0026^(400−x))

Fig. 7: Computation efficiency

By applying the modified Algorithms 1 and 2, we

obtain the assignment A3 through the duplex matching

framework. The matchings between RRHs and BBUs as

well as BBUs and MCs are also obtained by combining

A1, A2 and A3.

7 Performance Evaluation

In this section, based on the captured traces of an Openstack-

enabled testbed, we start with the measurement of pa-

rameters in Equation (1), followed by deriving the func-

tion of MCS index θul. Finally, we conduct the trace-

based simulation to estimate our proposed multi-stage

duplex matching algorithm.

7.1 Computation Efficiency Parameters

Firstly, we conduct measurements on our testbed to es-

timate the cloud computation efficiency. The standard

CPU benchmark (F = 1 GHz) is created by the Ru-

bis Task Generator [Rubis(2018)]. We adjust the num-

ber of tasks running on the Openstack instance and

record the processing time of all tasks. Each case is

tested 100 times to get the average processing time. As

illustrated in Fig. 7, the task processing time increases

with the load on the VM. In particular, a task process-

ing with a standard CPU benchmark can be finished

in 36.32 ms, whereas the completion time of all tasks

increases to 73.11 ms when dealing with 250 concurrent

task requests. Applying curve fitting, we therefore ob-

tain the relationship between processing time and load,



Communication and Computation Cooperation in Cloud Radio Access Network with Mobile Edge Computing 11

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Case #

R
e
fu

s
a
l 
ra

ti
o

 

 

Optimal baseline

Duplex matching

Linear programming relaxation

Fig. 8: Refusal ratio

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

# of UEs

R
e
fu

s
a
l 
ra

ti
o

 

 

Optimal baseline

Duplex matching

Linear programming relaxation

Fig. 9: Refusal ratio vs. # of UEs

i.e., t(q) = 102
1.0026(400−q)

, where t(q) denotes the task pro-

cessing time and q denotes the load on the VM. With re-

gard to the NPV function of Equation (1) in Section 3.2,

we approximately calculate α = 102, β = 1.0026, and

γ = 400.

7.2 Communication Efficiency Parameters

Based on the analysis above, we calculate the baseband

computation efficiency as fGOPS = 0.0276 GOPS. Ac-

cording to the MCS index table [MCS(2018)], MCS in-

dex (θ ∈ [0 − 31]) can be completely mapped into the

combination value of M×C×S, i.e., M×C×S = Φ(θ),

2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

Completion time (ms)
C

D
F

 

 

100 UEs

200 UEs

300 UEs

Fig. 10: Completion time

80 90 100 110 120 130
0

0.1

0.2

0.3

0.4

0.5

0.6

Parameter α

R
e
fu

s
a
l 
ra

ti
o

# of UE: 200

# of RRH: 50

# of BBU: 30

# of MC: 30

β=1.0026

γ=400

Fig. 11: Refusal ratio vs. α

where M denotes the modulation type (1, 2, 4, 6, refer-

ring to BPSK, QPSK, 16-QAM, and 64-QAM, respec-

tively), C denotes the coding rate (e.g., 1
2 , 2

3 , 3
4 , and

5
6 ), and S denotes the number of spatial streams (1 -

4). For example, θ = 0, 1, 15, 31 refer to M × C × S =

0.5, 1, 10, 20, respectively. Note that the multiple MCS

indexes may be mapped to the same M × C × S, for

example, both of θ = 1 and θ = 8 refer to M ×C×S =

1. [MCS(2018)] further illustrates that the data rate

grows with the increase of Φ(θ) (Φ(θ) ∈ [0.5, 20]). We

therefore fit a function of the data rate for Φ(θ), i.e.,

ρ = 1.768Φ(θ), where ρ denotes the data rate. Based

on Equation (2), we obtain the function of MCS index,



12 Tong Li et al.

1 1.002 1.004 1.006 1.008
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Parameter β

R
e
fu

s
a
l 
ra

ti
o

# of UE: 200

# of RRH: 50

# of BBU: 30

# of MC: 30

α=102

γ=400

Fig. 12: Refusal ratio vs. β

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Parameter γ

R
e
fu

s
a
l 
ra

ti
o

# of UE: 200

# of RRH: 50

# of BBU: 30

# of MC: 30

α=102

β=1.0026

Fig. 13: Refusal ratio vs. γ

which is expressed by the following equation:

g(θ) =
W

Φ(θ)
(11)

where W = 0.0156 (W is related to radio signal band-

width, which is set 20 MHz in this case), and the match-

ing function of Φ(θ) is obtained according to [MCS(2018)].

7.3 Algorithm Estimation

In this section, we conduct the matlab-based imple-

mentation to estimate the duplex matching framework,

where trace-based offloading requests are fed to these

0 50 150 200

0.2

0.4

0.6

0.8

1

100 

Parameter ∆φ
R

e
fu

s
a
l 
ra

ti
o

# of UE: 200

# of RRH: 50

# of BBU: 30

# of MC: 30 

α=102

β=1.0026

γ=400

Fig. 14: Refusal ratio vs. ∆ϕ

programs. In particular, task deadline, offloading traffic

size and computation resource demand are randomly

generated in a uniform distribution according to the

prior works [Sigwele(2015)] [Gardner(2015b)] [Livelab(2018)],

i.e., we set du ∈ [4000, 6000] (ms), Du ∈ [1, 100] (MB),

Fu ∈ [1, 20] (G Hz). We set parameters α = 102, β =

1.0026, γ = 400, γ0 = 0, ∆ϕ = 1, θul ∈ [0, 31], and

W = 0.0156.

For optimality comparison, we summarize the al-

gorithms as follows. Optimal baseline refers to the op-

timal solution obtained by brute-force searching. Du-

plex matching refers to our heuristic solution proposed

in Section 6. Linear programming relaxation refers to

the solution that converts the integer constraint (For-

mula (10)) into the continuous one, i.e., xuv, yub, zul ∈
[0, 1],∀u ∈ U , v ∈ V, b ∈ B. By solving the relaxed linear

programming, we obtain the rounded decision variables

as a feasible solution.

We start with a small offloading scenario with 6 of-

floading requests (each request is generated by an in-

dividual UE), 5 RRHs distributed geologically, 3 BBUs

in the BBU pool, and 3 MCs in the MEC platform,

i.e., n = 6, o = 3, k = 3, and m = 3. Figure 8 presents

the performance of our optimal assignment among UEs,

RRHs, BBUs and MCs (we test 10 randomly generated

cases). We can see that the multi-stage duplex match-

ing reduces the refusal ratio compared to the linear pro-

gramming relaxation solution (whose refusal ratio can

be as high as 68%). Note that both the Optimal base-

line and our solution can achieve 0 refusal ratio in Case

9. Eventually, this figure draws the conclusion that our

approach can achieve the near-optimal performance in

90% of cases. The reason is our duplex matching frame-



Communication and Computation Cooperation in Cloud Radio Access Network with Mobile Edge Computing 13

work can adapt to the dynamics of computation and

communication efficiency.

To avoid measurement bias, we also test the sce-

narios with a larger number of UEs, RRHs, BBUs and

MCs, i.e., n ≥ 100, o = 50, k = 30, and m = 30. Fig-

ure 9 illustrates the case when the number of UEs varies

from 100 to 500 (refusal ratio is the average value calcu-

lated by running the same case 100 times). We can see

that even though refusal ratio increases with the num-

ber of UEs, our solution can always bound the optimal

assignment. Figure 10 further explores the cumulative

distribution function (CDF) of task completion time

for the UEs admitted (UEs that can meet their dead-

line). It is easy to see that the completion time increases

with the growing number of UEs, due to the increased

load on both BBUs and MCs, which affects the compu-

tation efficiency. Moreover, 98% of the admitted tasks

can be completed in 4500 ms when we have 100 UEs,

and more than 91% of the tasks can be completed in

5000 ms with 200 or 300 UEs. This indicates that our

solution can gain a small enough completion time (com-

pared with deadline range) when minimizing the refusal

ratio. Note that although the two cases (with 200 and

300 UEs) achieve similar completion time, the refusal

ratio in 300 UEs is much higher than that in 200 UEs.

To better understand the computation efficiency in

different types of VMs, we investigate the refusal ratio

with different parameter inputs in Equation (1). Fig-

ure 11 presents the refusal ratio evolution when param-

eter α for the BBU or MC varies from 85 to 125. We can

see that the refusal ratio increases with α. On the other

hand, Figure 12 presents the refusal ratio evolution of

the skewed relationship between processing speed and

load, and Figure 13 presents the refusal ratio evolution

of service limitation. Our figures reveal that a good VM

should have a smaller α and larger β and γ. The min-

imum processing speed should be larger when the VM

is fully loaded (smaller α). In other words, adding idle

resources to the VM will significantly increase compu-

tation efficiency (larger β and γ).

8 Further Discussion

Our duplex matching framework is a bit different from

the DA. In CAP, students are considered by a college

which can admit a quota of only ϕ, which is fixed. Ac-

cording to the qualifications of applicants, the college

decides which one to admit. However, in our solution

we gradually increase the quota by ∆ϕ (∆ϕ = 1 by

default) in each iteration. The intention to introduce

quota is to bound the deadline of offloading requests

(since we can hardly process all tasks on the same VM,

this quota also contributes to load balance by avoid-

ing overloading the most popular VM). Furthermore,

we optimally assign BBUs or MCs to UEs by means of

iteration.

Figure 14 further presents the case when ∆ϕ varies

from 1 to 200. It is easy to see that the refusal ratio

increases with incremental ∆ϕ when ∆ϕ < 30. This re-

veals that the smaller∆ϕ helps to achieve higher assign-

ment performance with more iterations. On the other

hand, when ∆ϕ ≥ 30, the algorithm performance turns

out to be poor due to insufficient iterations.

9 Conclusion and Future Work

This paper focuses on the perspective of matching prob-

lem in the hybrid offloading architecture of the C-RAN

with MEC. We design an efficient offloading control

framework minimizing the refusal ratio of offloading re-

quests. The joint assignment modeling shows the NP-

Hardness of our problem, and a tri-level heuristic ap-

plying the duplex matching framework is therefore pro-

posed, which divides the cross-layer optimization into

three stages: the UE-to-RRH stage, the UE-to-BBU

stage, and the UE-to-MC stage. Our evaluation shows

that our solution can achieve the near-optimal perfor-

mance.

Our ongoing work is to modify a simple framework

version to work in real time and hopefully deploy a pro-

totype system in C-RAN environments. Future work

also includes the extension to environments with multi-

resource management as well as further research on sce-

narios of mobility management [Beck(2014)].

References

[Ahmed(2015)] Ahmed E (2015) Seamless application execu-
tion in mobile cloud computing: Motivation, taxonomy,
and open challenges. JNCA 52:154–172

[Alyafawi(2015)] Alyafawi I (2015) Critical issues of central-
ized and cloudified lte-fdd radio access networks. In:
Proc. of ICC, IEEE, pp 5523–5528

[Amazon(2018)] Amazon (2018) Amazon ec2. URL http://

aws.amazon.com/ec2/

[Andrews(2014)] Andrews JG (2014) What will 5g be? JSAC
32(6):1065–1082

[Beck(2014)] Beck MT (2014) Mobile edge computing: A tax-
onomy. In: Proc. of AFIN, Citeseer

[Brucker(2009)] Brucker P (2009) Complexity results
for scheduling problems. http://www2.informatik.

uni-osnabrueck.de/knust/class/

[Cai(2014)] Cai Y (2014) Cloud radio access networks (c-ran)
in mobile cloud computing systems. In: Proc. of INFO-
COM Workshops, IEEE, pp 369–374

[Dinh(2013)] Dinh HT (2013) A survey of mobile cloud com-
puting: architecture, applications, and approaches. Wirel
Commun Mob Comput 13(18):1587–1611



14 Tong Li et al.

[Edmonds(1972)] Edmonds J (1972) Theoretical improve-
ments in algorithmic efficiency for network flow problems.
JACM 19(2):248–264

[ETSI(2018)] ETSI (2018) Etsi first meeting of new stan-
dardization group on mobile-edge computing. http://

www.etsi.org/newsevents/

[Gaikai(2018)] Gaikai (2018) Gaikai. URL http://www.

gaikai.com

[Gale and Shapley(1962)] Gale D, Shapley LS (1962) College
admissions and the stability of marriage. American Math-
ematical Monthly pp 9–15

[Gardner(2015a)] Gardner K (2015a) Optimal scheduling for
jobs with progressive deadlines. In: Proc. of INFOCOM,
IEEE, pp 1113–1121

[Gardner(2015b)] Gardner K (2015b) Optimal scheduling for
jobs with progressive deadlines. In: Proc. of INFOCOM,
IEEE, pp 1113–1121

[Ha(2014a)] Ha VN (2014a) Cooperative transmission in
cloud ran considering fronthaul capacity and cloud pro-
cessing constraints. In: Proc. of WCNC, IEEE, pp 1862–
1867

[Ha(2014b)] Ha VN (2014b) Joint coordinated beamforming
and admission control for fronthaul constrained cloud-
rans. In: Proc. of GLOBECOM, IEEE, pp 4054–4059

[Hu(2015)] Hu YC (2015) Mobile edge computing: A key
technology towards 5g. ETSI White Paper 11

[Iwama(2008)] Iwama K (2008) A survey of the stable mar-
riage problem and its variants. In: Proc. of ICKS, IEEE,
pp 131–136

[Kosta(2012)] Kosta S (2012) Thinkair: Dynamic resource al-
location and parallel execution in the cloud for mobile
code offloading. In: Proc. of INFOCOM, IEEE, pp 945–
953

[Kuhn(1955)] Kuhn HW (1955) The hungarian method for
the assignment problem. Naval research logistics quar-
terly 2(1-2):83–97

[Kumar(2010)] Kumar K (2010) Cloud computing for mo-
bile users: Can offloading computation save energy? Com-
puter 43(4):51–56

[Li(2006)] Li D (2006) Nonlinear integer programming,
vol 84. Springer Science & Business Media

[Li(2016)] Li T (2016) Towards minimal tardiness of data-
intensive applications in heterogeneous networks. In:
Proc. of ICCCN, IEEE, pp 1–9

[Li(2017)] Li T (2017) On efficient offloading control in cloud
radio access network with mobile edge computing. In:
Proc. of ICDCS, IEEE, pp 2258–2263

[Livelab(2018)] Livelab (2018) Measuring wireless networks
and smartphone users in the field. URL http://livelab.

recg.rice.edu/traces.html

[MCS(2018)] MCS (2018) Modulation and Coding Scheme
(MCS) Index. URL http://mcsindex.com/

[Mobile(2011)] Mobile C (2011) C-ran: the road towards
green ran. White Paper

[Onlive(2018)] Onlive (2018) Onlive. URL http://www.

onlive.com

[Ross(1995)] Ross SA (1995) Uses, abuses, and alternatives
to the net-present-value rule. Financial management
24(3):96–102

[Rubis(2018)] Rubis (2018) Rubis Task Generator. URL
http://aiya.ms.mff.cuni.cz/been/documentation/

javadoc/overview-summary.html

[Safaei(2005)] Safaei F (2005) Latency-driven distribution:
infrastructure needs of participatory entertainment ap-
plications. Communications Magazine 43(5):106–112

[Sardellitti(2015)] Sardellitti S (2015) Joint optimization of
radio and computational resources for multicell mobile-
edge computing. TSIPN 1(2):89–103

[Sigwele(2015)] Sigwele T (2015) Evaluating energy-efficient
cloud radio access networks for 5g. In: Proc. of DSDIS,
IEEE, pp 362–367

[Tang(2015)] Tang J (2015) Cross-layer resource allocation
with elastic service scaling in cloud radio access network.
TWC 14(9):5068–5081

[Wang(2014)] Wang H (2014) On design and performance of
cloud-based distributed interactive applications. In: Proc.
of ICNP, IEEE, pp 37–46

[Wang(2016a)] Wang K (2016a) Cost-effective resource allo-
cation in C-RAN with mobile cloud. In: Proc. of ICC,
IEEE, pp 1–6

[Wang(2016b)] Wang X (2016b) Dynamic resource schedul-
ing in cloud radio access network with mobile cloud com-
puting. In: Proc. of IWQoS, IEEE, pp 1–6

[Wu(2012)] Wu J (2012) Green wireless communications:
from concept to reality. Wireless Communications
19(4):4–5

[Yang et al.(2013)Yang, Cao, Tang, Li, and Chan] Yang L,
Cao J, Tang S, Li T, Chan ATS (2013) A framework for
partitioning and execution of data stream applications in
mobile cloud computing. ACM Sigmetrics Performance

Evaluation Review 40(4):23–32


